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In this article we show that the analysis of a structured computer program is
in some ways much easier than the analysis of an unstructured one. This is in
contrast to the usual argument, which is that the synthesis of a structured program
is easier than the synthesis of an unstructured one.

. Introduction

It is often necessary to make a careful analysis of an
existing computer program—for example, in order to ob-
tain precise timing information. In this article we will
show that if the program is structured (in a sense to be
made precise in Section II), an important part of this
analysis can be done by merely inspecting the program
documentation; but if the program is not structured, the
analysis is much harder.

Let us begin with an example.! Figure 1, which is
taken from Tausworthe (Ref. 2, pp. 5-33), is the flow-
chart for a simple unstructured program.

Each box in Fig. 1 represents a program step, and the
letter inside the box represents the number of times the
corresponding step is performed during one run of the
program. While of course these numbers in general de-
pend on the details of the program and the program’s

1The discussion which follows is largely taken from Knuth (Ref. 1,
pp. 364-369).
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Fig. 1. An unstructured flowchart
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input, there is a considerable amount that can be learned
directly from the flowchart. To glean this information, let
us draw the flowchart in a more abstract form (Fig. 2), in
which the branches are labeled e;.e., : -, €15.

Fig. 2. Flowchart with branches labeled

Let E; (called a branch variable) denote the number of
times branch e; is taken during the program run. Then
since the number of times each program step is entered
is the same as the number of times it is exited, for each
program step we get a linear equation involving the
branch variables. These are called Kirchhoff's equations,
since if we were considering electrical networks instead
of program flowcharts, and if E; represented the current
along the edge e;, Kirchhoff's current law would yield
the same set of equations. Thus we obtain 8 equations in
the 12 branch variables:

E.,+E;=A=E,
E;=B=E; + E;

E,+E,=C=E,
E,=D=E; +E;

E; + Ey=E =E,,
Ew=F=E+E;

E,=G=E,
E5:H:E6.
0 1 2 38 4 5
o1 1 1 1 1 0
6 0 0 1 1 1 1
C=
9 0 0 0-—-1-1 0
1m0 0 0 0 1 0
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The fictitious edge e, has been added so that Kirchhoff’s
laws will also hold for the START and STOP nodes; i.e.,

E,=E, (STABT)

E..=E, (STOP)

Since START and STOP are executed exactly once in
each program run, we have the boundary condition
E, = 1. From now on, we will focus our attention on the
branch variables E,, - - -, E,, rather than the step variables
A, - H.

At this point we could apply classical linear algebra
and “solve” our system of equations, but there is another
technique which can be used and which takes advantage
of the combinatorial structure of the flowchart.

The first step in this procedure is to find a free subtree
in the flowchart graph. A free subtree is a connected sub-
graph which contains each node and has no cycles. In
our case the dotted branches e, e,, e, e,, e, e, es, e,
ey, of Fig. 2 form a free subtree. The remaining branches,
€y, €, €y, €11 are called fundamental branches. If we add
one of the fundamental branches to the free subtree, the
resulting graph contains a unique cycle, called a funda-
mental cycle. For example, the fundamental cycle con-
taining e, is e, e, €,, e;, es. However, in this cycle the
branches e;, e, e, must be traversed in the direction
opposite the arrows, so we denote this cycle by e, — e, —
e; — e; + e;. In this way we list the four fundamental
cycles of our flowchart:

Co:+et+e+et+e +e +e +epten
Ce: +e,.+te,+e, +e +es

Cy: —e,—e.—e;,—e;— ey

Ciu: te te +e,+ e

The matrix of coefficients of these cycles contains the
same information in more compact form:

6 7 8 9 10 11 12
01 0 0 1 0 1]
1 0 0 0 0 0 O
0-1 1 1 0 0 0
01 0 0 1 1 0]
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It turns out (see Knuth, Ref. 1, p. 366) that the rows of C
form a basis for the set of solutions to Kirchhoff’s equa-
tions; i.e., a vector E = [EE,, --, E,,] satisfies Kirch-
hoff’s equations if and only if E is a linear combination of
the rows of C. Consequently, the four branch variables
E,, E;, E,, E;;, can be taken as independent, and the
remaining 9 can be expressed in terms of them simply by
reading off the appropriate columns of C:

E =E
E.=E,+ E;
E,=E,+ E; — E,
E,=E,+ E;— E,
E;, = E;
E,=E,—E;+Ey

Es = +E9
E,, = E,
E,;, = E,

Finally, we use our “boundary condition” E, =1 and
obtain the following values for our original set of
unknowns A,B, --- H:

A=1+E;
B=1+E;
C=1+E;—-E,
D=1+ E; —E,

E=1+E;
F=1++E;
G=+E,
H= +E;

This set of equations expresses the number of times
each program step is executed in terms of the number of
times the three fundamental branches e;, e, e,, are
traversed. This is as far as Kirchhoff’s equations can take
us, and to proceed further it is necessary to know more
about the program itself. Our point is merely that solving
Kirchhoff’s equations for an arbitrary (unstructured) flow-
chart requires a considerable amount of work: the fastest
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known algorithm for finding a set of fundamental cycles
for a directed graph requires O(n”) arithmetical opera-
tions, where n is the number of nodes and v is an integer
between 2 and 3 which depends on the “fine structure”
of the graph (Ref. 3, pp. 280-284). Thus the “worst case”
performance of this algorithm is 0(n?), which is the same
as if we had used ordinary Gaussian elimination on
Kirchhoff’s equations.

In the next section we show that for structured pro-
grams, the situation is much simpler.

Il. Structured Programs

In a computer program, it is often helpful to have
certain program steps called subprograms, and to give
details of these subprograms elsewhere. For example, a
program flowchart could look like this (Fig. 3):

GTARD

SUBPROGRAM f

SUBPROGRAM g

Fig. 3. Program flowchart

and the subprogram flowcharts might look like this
(Fig. 4):

SUBPROGRAM f

SUBPROGRAM g

Fig. 4. Subprogram flowchart
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This program and its subroutines could be combined into
the following flowchart (Fig. 5):

£

| F

S

: ]

G

Fig. 5. Program and subroutine flowchart

In general, the subroutines could themselves contain sub-
routines containing further subroutines, etc. In this way,
a very large and complex flowchart can be built up from
simple components. The basic idea of structured program-
ming is to build up program flowcharts in this way from
a small collection of “basic” allowable flowcharts.

Let us now formally define a program flowchart as a
set of steps and a set of branches, each branch leading
from a step a to a step b, and denoted pictorially by

a — b . This branch is called an exit from ¢ and an
entrance to b. A flowchart must always have two special
steps called START and STOP such that there is only
one exit from START, and no entrances, and only one
entrance to STOP, no exits. Furthermore, a flowchart step
with exactly one entrance and exit can be designated a
“subprogram,” and will refer to another flowchart, as in
the above example,

A few important flowcharts which have been given
“names” for reference are shown in Fig. 6.

It is common to employ different symbols in order to
distinguish various kinds of program steps. Thus in Ref. 2
a step with one entrance and several exits is called a
decision node and denoted by a lozenge; one with one
exit and several exits is called a collecting node and
denoted by a circle; and one with one entrance and one
exit is called a process node and denoted by a rectangle.
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"WHILEDO"

Fig. 6. Some important flowcharts

We come now to the definition of a structured program
flowchart. If B = {F.,F,, -} is a set of flowcharts—
called @-flowcharts—another flowchart is said to be
B-structured if it is either an atomic computation, or if
it is a $-flowchart, all of whose subprograms are
B-structured.

It is known (Ref. 2, ch. 5) that any program? can be
rewritten in such a way that its flowchart is $-structured
if ¢ = {CHAIN,IFTHENELSE DOWHILE}.

Since structured program flowcharts with many levels
of subprograms are hard to draw, it is convenient to have
a compact pictorial description of them. One such de-
scription is the program tree, in which each $-flowchart
is represented by a program tree module, consisting of a
box labeled with the flowchart name, and descending
arrows corresponding to the subprograms. For example,
the modules for CHAIN, IFTHENELSE, DOWHILE,
and WHILEDO look like this (Fig. 7):

2Actually this result holds only for proper programs; for definitions,
see Ref. 2.
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IFTHENELSE

)

WHILEDO

4

DOWHILE

) ®

Fig. 7. Some program tree modules

The module for the special flowchart “atomic computa-
tion” is the symbol “=".

Given a @-structured flowchart, its program tree is
defined as “=", if it is an atomic computation, or if it
is a P-flowchart with subprograms, as the program tree
module of the B-flowchart, with the program trees of its
subprograms attached to the appropriate arrows of the
module We define the level of the first (top) B-flowchart
as 1, and for the other flowcharts as one more than its “par-
ent” flowchart in the program tree. For example, here is the
program tree of a {CHAIN,IFTHENELSE,DOWHILE }-
structured program, with the level numbers written in
parentheses to the right of the flowchart modules (Fig. 8):

| A
| | ~ LEVEL 0
| |
[
WHILEDO )] - LEVEL 1
- LEVEL 2
- LEVEL 3
- LEVEL 4

+

m
Ny
1
o
~N
:
.

Fig. 8. A program tree for a structured flowchart
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(The dummy module at level 0 and the labels on the
arrows will be explained in Section III; for. now they

should be ignored.) If expanded into one flowchart, it
would look like this (Fig. 9):

3
by

} e

u

Fig. 9. Flowchart represented by the tree of Fig. 8

(This is the same as the flowchart in Figure 5.1.2 in
Ref. 2; the branch labels will be explained in Section II1.)

l1l. Solving Kirchhoff's Equations for
Structured Flowcharts

In this section we will show that for a $-structured
program flowchart, Kirchhoff’s equations can be solved
by a simple inspection of the program tree. Throughout,
we will illustrate the ideas with the B-structured program
of Figs. 8 and 9, with $ = {CHAIN, IFTHENELSE,
WHILEDO).
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The first step is to solve Kirchhoff's equations in each
of the B-flowcharts. This can be done by the method
described in Section I, and it may take a lot of work if
B contains many complicated flowcharts. The point is,
however, that once this is done we will be prepared to
solve Kirchhoff’s equations for any $-structured program
with essentially no additional work.

For example, if @ = {CHAIN, IFTHENELSE,
WHILEDO), a set of solutions to Kirchhoff’s equations
is given in Fig. 10 (cf. Fig. 6; the edges are labeled with
lower-case a’s, b’s, and c’s, and the upper-case letters
denote the corresponding branch variables.)

(Al =AO)
A2 =A0
(A3=A0)
(B] =Bo)
BS =- 82 + BO
B4—B2
B5 == B2 + Bo
(36350)
WHILEDO
~
c ~N
] N
N c
0
s \\ (€ =Co)

/

/ 192 \ Co=CL+C
!/ \ 2 3 0
|’<:4 lc_s_.l C4=C3
\ =
\ . €5=Co)

\,

N
~
~ f

Fig. 10. Structured program flowchart
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(Appendix A contains the solutions to Kirchhoff’s equa-
tions for four more simple flowcharts which may be
encountered as B-flowcharts.)

Having done this preliminary work, we are prepared to
solve Kirchhoff’s equations for any @-structured flow-
chart. Our first step is to assign labels to the branches in
the component B-flowcharts. To do this, we assign an
identifying number to each flowchart and use that num-
ber as a superscript on the branch variables, so that
identical @B-flowcharts which appear in different places
in the program tree can be distinguished. For example
in the flowchart of Fig. 8, the branch variables of
WHILEDO Flowchart 1 will be denoted by c¢{”, and
those of Flowchart 4 by ¢{.

It is important to notice that except for the top (level 1)
flowchart, not all of the flowchart branches need be con-
sidered. For example, in Fig. 8, in CHAIN Flowchart 2,
branch a® is the entrance from WHILEDO Flowchart 1
and so it is identical to ¢{”. Similarly @{» is identical
to ¢{V. Because of this, in each $B-flowchart except the
top one, the exit from START, the entrance to STOP, and
the fictitious branch from STOP to START will all be
missing. In the example of Fig. 8 there will be 20 labeled
branches; these have been indicated in Fig. 9, although
we emphasize that it will not be necessary to draw the
complete flowchart in order to solve Kirchhoff’s equations.

The next step is to observe that within each component
B-flowchart, Kirchhoffs equations remain valid, except
that a special interpretation must be given the fictitious

STOP - START branches. For example, in the
WHILEDO Flowchart 4 in Fig. 8, the branch ¢{* repre-
sents the “boundary” between this flowchart and the rest
of the program. Thus C{¥ is the number of times the
WHILEDO Flowchart 4 is entered, and so the “boundary
condition” is C{¥ = B, since every time the branch b
in IFTHENELSE Flowchart 3 is traversed, the flowchart
WHILEDO Flowchart 4 is entered.

In this way we can express every branch variable in the
B-structured flowchart in terms of the fundamental
branch variables of the component $-flowcharts, as
follows. Given a branch in one of the component
B-flowcharts, use Kirchhoffs equations within the flow-
chart to express the corresponding branch variable in
terms of the fundamental branch variables in the same
B-flowchart, together with a branch variable in a
B-flowchart at a higher level. This new branch variable,
if not itself fundamental, is then subject to the same pro-
cedure, until eventually the top flowchart is reached.
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For example the edge b{" in Figs. 8 and 9 yields the
following series of equations:

B(37) = ——B(27) + B(o7)

Bg) = A(IG)
A(IG) = B(33)
B®» = —B® + B®
BS) = A®
AP = A®
Af)2) = C(sl)
Thus finally we get the equation B{" = —B{" — B{®

+ C, which expresses B{" in terms of the fundamental
branch variables B, B, C(¥".

We can avoid this “unraveling” procedure by observing
that in the above procedure we “bubble-up” through the
program tree, picking up fundamental branch variables
as we go. This suggests that we should label the arrows
in the program tree with information that will tell us
which branches to “pick up” in our rise to the top. The
simplest such scheme is to label each program tree arrow
with the formula which expresses the corresponding
B-flowchart branch variable in terms of the fundamental
branch variables, perhaps omitting the fictitious branch
variables, but retaining their signs®. Thus the modules
in Fig. 7 would appear as this (Fig. 11):

IFTHENELSE
2 -

WHILEDO

Cs

DOWHILE

2
) ®
Fig. 11. Modules of Fig. 7

31t is possible that some branch variables will occur on the funda-
mental cycle which includes the fictitious branch with a minus sign.
However, for any flowchart which corresponds to a realizable com-
puter program, there will always be a properly oriented path from
START to STOP, which we can take as part of this fundamental
cycle. This means that we can always assume that the fictitious
branch variable occurs with a “+” sign in Kirchhoff’s equations.
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Assuming that the program tree has been built from
these arrow-labeled modules, the expression of a given
branch variable (b.v.) in terms of the fundamental branch
variables (f.b.v’s) can be obtained as follows. First, ex-
press the given b.v. in terms of £b.v.’s in its own (local)
B-flowchart. If the fictitious b.v. does not occur in this
expression, we are through, since these local £.b.v.’s are
global £b.vs as well. If, however, the fictitious b.v. does
appear, it must be expressed in terms of fundamental
b.v’s at higher levels. This is done by “climbing” the
program tree, picking up arrow labels along the way, and
stopping as soon as an arrow without a “+” is reached.
(To be completely systematic, we should add a dummy
module at level 0, whose arrow is labeled “1”, so that the
fictitious b.v. at level 1 will be assigned the value 1 by
this procedure. This has been done in Fig. 8).

For example, using this technique on the program tree
of Fig. 8, we express B.™ interms of £.b.v.’s as follows:

B = —B{ + B(" (Solution to Kirchhoff’s
equations in [IFTHENELSE
flowchart; see Fig. 10.)

B{" = —B® + C® (From labeled program tree;
see Fig. 8))

In this way we obtain the following complete solution to
Kirchhoff's equations for the flowchart of Figs. 8 and 9:

Flowchart Solution
number
1 cw=1
CQ =CP 41
C{ = fundamental
= o
5
2 AR =Cp
3 B{* = fundamental
BY = — By + Gy,
B&a) = B(23)
B® = —B® + C®
4 C# =C® + B®
C{» = fundamental
C® = CWw
5 A(Zm = CZ‘*’
6 A(ZS) = _B(zs) + Cgl)
7 B{» = fundamental
B = —B{ — B® + CY
g}: z Ii%;m — B® + CW
5 2 2 3
8 A® = —BY 4 C{,
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In this way we have expressed each of the 20 branch
variables in terms of the four fundamental branch vari-
ables C", B®» ,C{», B(".

In summary, we have seen that in order to solve
Kirchhoff's equations for a $B-structured program, it is
first necessary to solve Kirchhoffs equations in the
B-flowcharts, and also to label the arrows of the program
tree modules. Once this is done the solution to Kirchhoff’s

equations can be read directly from the program tree.
Since the program tree is generally available anyway—
it is part of the program documentation—once the solu-
tions to Kirchhoff's equations for the @-flowcharts are
available, the solution of KirchhofF’s equations in an arbi-
trary B-structured flowchart becomes trivial. For this
reason, we have listed in the appendix seven flowcharts
which are likely to appear in &, together with their
fundamental cycles, solutions to Kirchhoff's equations,
and program tree modules.

References

1. Knuth, Donald, The Art of Computer Programming, Vol. 1: Fundamental
Algorithms, Addison-Wesley, Reading, Mass., 1969.

2. Tausworthe, Robert, Standardized Development of Computer Software,
SP 43-29, Jet Propulsion Laboratory, Pasadena, Calif. (to be published).

8. Deo, Narsingh, Graph Theory, with Applications to Engineering and Computer
Science, Prentice-Hall, Englewood Cliffs, N. J., 1974.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32

185



186

Appendix A

Some Basic Flowcharts

In the flowchart diagram, solid branches are fundamental, dotted branches are
not. Equations in parentheses involve branch variables whose branches are
“connections” to the overall flowchart and which will not occur except at the top

of the program tree.

IFTHENELSE

FUNDAMENTAL CYCLES

-G+ a,
q(\1a,’-4c.2 Q"

KIRCHHOFF 'S EQUATIONS
(A‘ = Ao)
Ay = A0

FUNDAMENTAL CYCLES

b0+b] -1»b3+bs+b6
b2+b4-b5-b3

KIRCHHOFF 'S EQUATIONS

8, =8y

B, = FUNDAMENTAL
B3 =~ 82 + bo
By=8,

85 = -82 + By

(85 = By)

FUNDAMENTAL CYCLES

coteytegteg
cgtoytoy

KIRCHHOFF 'S EQUATIONS
€, =<y

C2 = C3 +CO

C3 = FUNDAMENTAL

c

47C3

(C5 = Co)
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DOWHILE

|
A DOWHILE
| D

2

CASE(n)
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FUNDAMENTAL CYCLES

do + d] - d4 + d5

d2 + d3 + d4

KIRCHHOFF 'S EQUATIONS
(D] = Do)

D, = FUNDAMENTAL

D3:D2

DA:D?_-D0

(D5 = Do)

FUNDAMENTAL CYCLES

eo+e] +e2+e3 +e6

eyt eg tey + ey
KIRCHHOFF 'S EQUATIONS
(E] = Eo)

E2=E4+EO

E3 = E4 + EO
E4 = FUNDAMENTAL

FUNDAMENTAL CYCLE

00+G] +02 + oea. +Gn+]
KIRCHHOFF'S EQUATIONS
(A, =Ap

A

2 = Ay

FUNDAMENTAL CYCLES

bo + by + By + byngy thonsp
bi + bn+i - l:>2n+] = bn+1
(i=2,3,...,n

KIRCHHOFF'S EQUATION

(B] = BQ)
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